
WHITEPAPER

2019

2

List of attributes for the MonerEOS token

1. Complete privacy. No risk of future disclosure
2. User-created tokens
3. Potential for gambling apps
4. 2 trx per second per account
5. No staking or voting
6. 200ms confirmation and irreversible
7. Unknowable exact supply, estimates only.
8. Generally deflationary.
9. Require initial trusted setup

10. Not possible to detect breach in security until
 new supply enters market
11. Security would likely take nation state level
12. No new crypto math
13. Tech foundation already used by governments
 for most secure infrastructure

MonerEOS.org

3

4

Dual linkable ring signatures

1 Introduction

5

The original CryptoNote protocol describes the use of a type of one-time linkable spontaneous anonymous

group (LSAG) signature. A signer chooses a so-called ring of public output keys, one of which is her own,

and fashions a signature on the message of her choice. The scheme is such that any veri�er can be assured

that one of the keys in the ring is the true signer (that is, the signer knows the corresponding private key),

and that this key was not used to sign any other message with any other ring. For space e�ciency, early

Monero transactions used a ring-independent one-time version of the LSAG signature scheme in [2] to direct

funds using the ring as a sender anonymity set.

To handle con�dential transactions, Monero uses a variation of this scheme called multilayered linkable

spontaneous anonymous group (MLSAG) signatures. These signatures allow the signer to include vectors of

keys that include Pedersen commitments to amounts, as described in [4].

In both LSAG and MLSAG signatures, ring members (with the exception of amount commitments) are

output public keys, which are generated in Monero transactions. A given transaction typically has multiple

outputs, where the sender directs a portion of funds from a previous output to some address, and sends

the change back to herself so the transaction balances. In each case, the recipient can recover the output’s

private key and use it in a later ring signature.

In this research bulletin, we describe a modi�cation to the construction of transaction outputs and to the

construction of ring signatures. We �rst describe a change whereby a sender generates a dual-key output

and a speci�ed trigger block height that \switches" the validity between the two. Further, we describe a

modi�cation to LSAG and MLSAG signatures, a dual linkable spontaneous anonymous group (DLSAG)

signature scheme, that allows a sender to include one of these dual-key outputs in a linkable ring signature.

When a dual, which is comprised of two separate output public keys, is the true spender, any veri�er can link

two ring signatures if they were computed by either of the keys in the dual. Additionally, it is possible to

include both dual-key outputs and non-dual (that is, single) outputs as ring members in a DLSAG signature,

ensuring that signers have the largest possible set of potential ring members available to them.

This signature scheme has applications to refund transactions in Monero, which themselves are important

for certain second-layer solutions. To generate such a refund transaction, a sender generates a dual-key output

and speci�es a trigger block height. The consensus protocol could dictate that prior to the trigger height,

only one of the keys in the dual is valid as a spender; after the trigger height, only the other key in the dual

is valid. This allows the sender to reclaim the funds if they are not spent by the recipient in time.

A related version of this scheme was originally described in personal communication with Pedro Moreno-

Sanchez, and was in collaboration with pseudonymous coauthor donut. This related scheme considered the

use of commitments to block trigger heights in order to hide the actual switching height.

6

2 Description

Let G be an additive group of prime order ‘. Let H s : f0; 1g � ! Z ‘ and Hp : f0; 1g � ! G be cryptographic

hash functions. Let G 2 G be a publicly-known group generator.

When sending funds in a Monero transaction, the sender uses the recipient’s public user address (A; B) :=

(aG; bG) 2 G � G, along with a random nonce r, to generate a one-time output public key de�ned as

P := Hs(rA; t)G + B, where t is the output’s index within the transaction. The recipient uses her private

user key (a; b) and the point R := rG to recover the output private key p := Hs(aR; t) + b, which is used to

spend the funds as part of a later ring signature.

To facilitate refund transactions, we assume that a sender has generated a modi�ed output consisting of

two one-time public keys. One such key is directed to the recipient’s address, while the other is typically

directed back to the sender. These one-time keys are called a dual, and are designated as such in the

transaction structure for later identi�cation. The dual also has an associated trigger block height value,

with the intent that prior to the trigger, only the �rst one-time key is valid and can be used to spend the

associated funds, and after the trigger, only the second is valid. This has the e�ect of permitting the recipient

to claim funds up to a certain time, after which the sender can reclaim them.

Despite the simplicity of generating separate outputs representing the spend authority of the same funds

based on a given block height, it does not su�ce to use a traditional LSAG or MLSAG ring signature that

includes one of the public keys in a dual without modifying the key image computation. Because key images

are computed for each output spent in a ring signature, it would be possible for both the pre-trigger and

post-trigger keys to be used in separate signatures undetected. To combat this, we modify the LSAG scheme

such that one-time output public keys come in pairs that share the same key image. We later discuss the

MLSAG equivalent to the construction.

2.1 Signature generation

We show the steps of generating the DLSAG signature in Table 1, allowing for any of the ring members

(including the real spender) to be either part of a dual or not. In the following notation, we assume the

spender wishes to spend funds associated to a one-time key P� = p� G with a ring size n, where 1 � � � n
is a secret index. We also assume that any key Pi that is part of a dual has a partner key Qi . The roles of

Pi and Qi in a dual are arbitrary.

Note that a DLSAG signature fully reduces to the LSAG case when all keys in the ring, including the

true spender, are not part of a dual; that is, when the signature follows only the right-hand side of the above

diagram.

The sender is free to sign with either type of key. However, she must consider a restriction on the allowed

ring members. If a potential ring member is part of a dual, she must examine the original transaction and

determine whether that key is valid at the current block height. If it is not, then she must choose the partner

key within the dual. She may wish to further avoid keys whose trigger is very close to the current block

7

Veri�cation of a DLSAG proceeds similarly to that of an LSAG signature, and may be done by any observer.

When presented with a list of output public keys that are used in the ring signature, the veri�er �rst ensures

that for any keys that are part of a dual, the chosen key is valid at the transaction’s block height. If not,

the veri�er rejects the signature. The veri�er also examines the key image J ; if it appears as part of any

previous valid LSAG or DLSAG signature, the signature is rejected. The veri�er next completes the steps

in Table 2.

2.2 Signature veri�cation

height in case her transaction is not included in a new block quickly enough. These restrictions ensure that

adversarial veri�ers of the signature cannot easily eliminate invalid ring members when trying to determine

the true spender.

Also observe that partner keys P and Q in a dual share the same key image when generated in the same

transaction, since mpQ = mqP = mpqG by construction. The inclusion of the hash m, which encodes both

the originating transaction as well as the index of the output within that transaction, prevents one of the

two recipients of a dual from burning the funds of the other by generating another dual with the same key

image that the evil recipient spends �rst.

Table 2: DLSAG signature veri�cation

Fn � H p(Pn)

c�1 � H s(txdata; sn G + cn Pn ; sn Fn + cn J)

accept only if c�1 = c1

mn � H s(txid; index)

Fn � m n Qn

Fi � H p(Pi)

ci+1 � H s(txdata; si G + ci Pi ; si Fi + ci J)

for each 1 � i < n
mi � H s(txid; index)

Fi � m i Qi

Dual-key Single-key

Table 1: DLSAG signature generation

s� � u � c � p�

output (c1; fs i gn
i=1 ; J)

Fi � H p(Pi)

ci+1 � H s(txdata; si G + ci Pi ; si Fi + ci J)

for each i 6= �
choose random si

mi � H s(txid; index)

Fi � m i Qi

F� � H p(P�)

choose random u
c�+1 � H s(txdata; uG; uF �)

J � p � Hp(P�)

F� � m � Q�

m� � H s(txid; index)

J � m � p� Q�

Dual-key Single-key

8

The similarity between DLSAG signatures and the LSAG (from [2]) and MLSAG (from [4]) schemes leads

to similar proofs of security. As in the cited cases, we want to show that our signatures are unforgeable,

5 Security

The DLSAG construction presented above applies only to the now defunct CryptoNote ring signature imple-

mentation. However, modern transactions require a more robust multi-key signature that can accommodate

the amount commitments used in the Monero con�dential transaction model. We therefore must ensure that

there is an appropriate generalization of the DLSAG construction.

In a general MSLAG signature, each of the k inputs has an associated ring containing n public output

keys (in addition to a separate amount commitment that we do not consider here). The sender chooses

a secret index 1 � � � n such that she controls the public keys P �;j � p �;j G for 1 � j � k. Signature

generation proceeds according to the steps in Table 3.

As before, this reduces completely to an MLSAG signature if no ring members are part of a dual. Further,

it reduces entirely to the single-input DLSAG construction shown above in the case k = 1. Given a signature

and description of the corresponding set of public one-time output keys, signature veri�cation follows the

steps in Table 4.

4 Multi-input extension

A useful application of the DLSAG scheme is to refund transactions. Some constructions of payment chan-

nels, which permit o�-chain transactions between two parties that are later settled, require the use of

non-interactive refund transactions as well. Suppose that Alice wishes to send funds to Bob, but wants to

ensure that they are returned to her after an agreed-upon amount of time if Bob does not spend them. To do

so, Alice constructs a transaction where the funds destined for Bob are part of a dual: one key P is directed

to Bob, and the partner key Q is directed to her. The two keys in the dual share a range proof. A block

height h is included in the transaction data, where h is greater than the current block height of the network.

If Bob wishes to claim the funds, he must spend them prior to block height h in a transaction that uses

the key P in a DLSAG signature. Veri�ers see that the transaction includes P among its ring members, and

that this output is still valid. The key image is of the form J = mpQ, which has not been used before. The

veri�ers accept the transaction as valid.

However, if Bob does not claim the funds prior to block height h, Alice may claim them by spending her

key Q using a DLSAG signature. Veri�ers now see that the transaction includes Q, and that this key is now

valid. The key image is J = mqP , which has not been used since Bob did not spend P . The veri�ers accept

this transaction as valid.

Notice that if Bob spent P prior to height h but Alice becomes evil and wishes to spend Q after height h
(which would constitute a double spend), the process will properly fail. Veri�ers will �nd Alice’s key image

J = mqP = mpQ to be the same as Bob’s, and will reject her transaction. This construction of a shared key

image is essential, as otherwise veri�ers would not reject Alice’s evil transaction. On the other hand, if the

chain on which Bob signed the transaction is later overtaken by a chain with greater cumulative di�culty

that does not include Bob’s transaction, Alice can always claim the funds later; we consider this possibility

outside the scope of this work.

3 Application to refund transactions

9

Table 4: Generalized DLSAG signature veri�cation

Fn;j � H p(Pn;j)

c�1 � H s(txdata; fs n;j G + cn Pn;j ; sn;j Fn;j + cn J j gk
j=1)

accept only if c�1 = c1

for each 1 � j � k
mn;j � H s(txid; index)

Fn;j � m n;j Qn;j

Fi;j � H p(Pi;j)

ci+i � H s(txdata; fs i;j G + ci Pi;j ; si;j Fi;j + ci J j gk
j=1)

for each 1 � i < n; 1 � j � k
mi;j � H s(txid; index)

Fi;j � m i;j Qi;j

Dual-key Single-key

Table 3: Generalized DLSAG signature generation

output (c1; fs i;j gn;k
i;j=1 ; fJ j gk

j=1)

for each 1 � j � k
s�;j � u j � c � p�;j

Fi;j � H p(Pi;j)

ci+1 � H s(txdata; fs i;j G + ci Pi;j ; si;j Fi;j + ci J j gk
j=1)

for each i 6= �; 1 � j � k
choose random si;j

mi;j � H s(txid; index)

Fi;j � m i;j Qi;j

c�+1 � H s(txdata; fu j G; uj F�;j gk
j=1)

F�;j � H p(P�;j)

choose random uj

J � p �;j Hp(P�;j)

F�;j � m �;j Q�;j

for each 1 � j � k
m�;j � H s(txid; index)

J j � m �;j p�;j Q�;j

Dual-key Single-key

10

We observe that the ambiguity proof in [4] does not rely on the particular structure of the base point used in

terms passed into the hash-to-scalar function H s to generate commitments. The proof is trivially modi�ed

to account for the Fi terms presented here.

5.3 Signer ambiguity

where i is the index of the common signing key in one of the signatures; this leads to the same conclusion

as in [4].

logG (si G + ci Pi) = logm i Q i
(si Fi + ci J)

If an adversary is able to create two signatures signed by key vectors sharing a common true signing key,

there are two cases. If the common signing key is not part of a dual, the proof continues identically to [4].

If the common signing key is part of a dual, then we observe that

5.2 Linkability

The LSAG/MLSAG proofs of unforgeability use the number of calls to random oracles to establish bounds

on a de�ned adversary’s advantage in breaking the discrete logarithm problem in recovering a signer’s

private key. These oracles represent the behavior of the hash-to-scalar function H s, hash-to-point function

Hp, and valid signing. We observe that for a dual key image of the form J = mpqG, the value m is

uniformly distributed under the random oracle model. For a uniformly distributed value xG, the distributions

of (pG; qG; J) and (pG; qG; xG) are computationally indistinguishable under the decisional Di�e-Hellman

assumption.

The proof of unforgeability in [4] therefore holds with only minor modi�cation, where we consider calls

to the hash-to-point random oracle for dual keys replaced by calls to a decisional Di�e-Hellman oracle.

5.1 Unforgeability

linkable, and signer-ambiguous. As the proofs are nearly identical to those presented for the original signature

schemes, we highlight only the notable di�erences.

11

The signature scheme presented here o�ers an interesting and novel approach to non-interactive refund

transactions for use in Monero. However, implementation choices like block height commitments and re-

quirements for outputs would have an e�ect on transaction complexity, size, and adversarial heuristics. It

is not known whether a space-e�cient key generation method could be used to describe dual-key outputs in

a more e�cient way. The cost in veri�cation complexity is likely to be unavailable without novel signature

schemes.

6 Concluding remarks

The current Monero transaction implementation mitigates against both double-spending and one-time key

reuse. If a user’s wallet sees multiple outputs paying to the same one-time key, it chooses the one with the

largest amount; otherwise, it risks losing a larger amount since all such outputs have the same key image.

Note that the proposed construction separates these roles; the modi�ed key image computation considered

here will not inherently prohibit spending to the same one-time key. Alternate protocol-level rules involving

one-time key reuse, or the inclusion of a second key image and more complex signature, would be required

to retain this.

5.5 Key reuse

5.4 Heuristic attacks

The DLSAG scheme provides a guarantee that, absent external information, any public key referenced in a

signature is equiprobable as the true signer. However, an adversary may use such external information to

undermine this guarantee via heuristics.

� Spend time. If Alice initiates a refund transaction to Bob and Bob does not spend the funds before

the trigger height, Alice may attempt to spend the funds shortly after this occurs. If an adversary sees

a ring containing a dual whose trigger was recently reached (or perhaps is about to be reached), the

adversary may conclude that the dual is the true spender. Moreover, one of the keys in a dual is valid

for only a small amount of time, while its partner is available in perpetuity. Such heuristics should be

considered in relation to the suspected spend patterns discussed elsewhere, as in [3, 1].

� Availability of dual outputs. Dual outputs are trivially distinguishable from single outputs. If the

number of available dual outputs in the blockchain is small relative to single outputs, they will be

chosen less frequently as ring members. An adversary may conclude that any ring containing dual

outputs is more likely to have such an output as the true spender.

12

2.2 The proof-of-work function

Bitcoin creator Satoshi Nakamoto described the majority decision making algorithm as \one-
CPU-one-vote" and used a CPU-bound pricing function (double SHA-256) for his proof-of-work
scheme. Since users vote for the single history of transactions order [1], the reasonableness and
consistency of this process are critical conditions for the whole system.

The security of this model su�ers from two drawbacks. First, it requires 51% of the network’s
mining power to be under the control of honest users. Secondly, the system’s progress (bug �xes,
security �xes, etc...) require the overwhelming majority of users to support and agree to the
changes (this occurs when the users update their wallet software) [6].Finally this same voting
mechanism is also used for collective polls about implementation of some features [7].

This permits us to conjecture the properties that must be satis�ed by the proof-of-work
pricing function. Such function must not enable a network participant to have a signi�cant
advantage over another participant; it requires a parity between common hardware and high
cost of custom devices. From recent examples [8], we can see that the SHA-256 function used
in the Bitcoin architecture does not posses this property as mining becomes more e�cient on
GPUs and ASIC devices when compared to high-end CPUs.

Therefore, Bitcoin creates favourable conditions for a large gap between the voting power of
participants as it violates the \one-CPU-one-vote" principle since GPU and ASIC owners posses
a much larger voting power when compared with CPU owners. It is a classical example of the
Pareto principle where 20% of a system’s participants control more than 80% of the votes.

One could argue that such inequality is not relevant to the network’s security since it is not
the small number of participants controlling the majority of the votes but the honesty of these
participants that matters. However, such argument is somewhat awed since it is rather the
possibility of cheap specialized hardware appearing rather than the participants’ honesty which
poses a threat. To demonstrate this, let us take the following example. Suppose a malevolent
individual gains signi�cant mining power by creating his own mining farm through the cheap

hardware described previously. Suppose that the global hashrate decreases signi�cantly, even for
a moment, he can now use his mining power to fork the chain and double-spend. As we shall see
later in this article, it is not unlikely for the previously described event to take place.

7

In this section we propose and ground the new proof-of-work algorithm. Our primary goal
is to close the gap between CPU (majority) and GPU/FPGA/ASIC (minority) miners. It is
appropriate that some users can have a certain advantage over others, but their investments
should grow at least linearly with the power. More generally, producing special-purpose devices
has to be as less pro�table as possible.

5.1 Related works

The original Bitcoin proof-of-work protocol uses the CPU-intensive pricing function SHA-256.
It mainly consists of basic logical operators and relies solely on the computational speed of
processor, therefore is perfectly suitable for multicore/conveyer implementation.

However, modern computers are not limited by the number of operations per second alone,
but also by memory size. While some processors can be substantially faster than others [8],
memory sizes are less likely to vary between machines.

Memory-bound price functions were �rst introduced by Abadi et al and were de�ned as
\functions whose computation time is dominated by the time spent accessing memory" [15].
The main idea is to construct an algorithm allocating a large block of data (\scratchpad")
within memory that can be accessed relatively slowly (for example, RAM) and \accessing an
unpredictable sequence of locations" within it. A block should be large enough to make preserving
the data more advantageous than recomputing it for each access. The algorithm also should
prevent internal parallelism, hence N simultaneous threads should require N times more memory
at once.

Dwork et al [22] investigated and formalized this approach leading them to suggest another
variant of the pricing function: \Mbound". One more work belongs to F. Coelho [20], who

13

7.1

2 . This in turn implies that a machine with a CPU
200 times faster than the modern chips can store only 320 bytes of the scratchpad.

s of all blocks
increases the time less than by a factor of s�1

10 � 9 � N = 4:5N . It is easy to show that storing only 1
10 � N + : : : + 1

3 � 2 � N = N additional recalculations;
9=10 results in 1

3 � N + 1

2 � N , where N is the number
of iterations. The overall computation time increases less than by half because there are also
time independent (constant time) operations such as preparing the scratchpad and hashing on
every iteration. Saving 2=3 of the memory costs 1

proposed the most e�ective solution: \Hokkaido".
To our knowledge the last work based on the idea of pseudo-random searches in a big array is

the algorithm known as \scrypt" by C. Percival [32]. Unlike the previous functions it focuses on
key derivation, and not proof-of-work systems. Despite this fact scrypt can serve our purpose:
it works well as a pricing function in the partial hash conversion problem such as SHA-256 in
Bitcoin.

By now scrypt has already been applied in Litecoin [14] and some other Bitcoin forks. How-
ever, its implementation is not really memory-bound: the ratio \memory access time / overall
time" is not large enough because each instance uses only 128 KB. This permits GPU miners
to be roughly 10 times more e�ective and continues to leave the possibility of creating relatively
cheap but highly-e�cient mining devices.

Moreover, the scrypt construction itself allows a linear trade-o� between memory size and
CPU speed due to the fact that every block in the scratchpad is derived only from the previous.
For example, you can store every second block and recalculate the others in a lazy way, i.e. only
when it becomes necessary. The pseudo-random indexes are assumed to be uniformly distributed,
hence the expected value of the additional blocks’ recalculations is 1

3. GPUs may run hundreds of concurrent instances, but they are limited in other ways:
GDDR5 memory is slower than the CPU L3 cache and remarkable for its bandwidth, not
random access speed.

4. Signi�cant expansion of the scratchpad would require an increase in iterations, which in
turn implies an overall time increase. \Heavy" calls in a trust-less p2p network may lead to
serious vulnerabilities, because nodes are obliged to check every new block’s proof-of-work.
If a node spends a considerable amount of time on each hash evaluation, it can be easily
DDoSed by a ood of fake objects with arbitrary work data (nonce values).

5.2 The proposed algorithm

We propose a new memory-bound algorithm for the proof-of-work pricing function. It relies on
random access to a slow memory and emphasizes latency dependence. As opposed to scrypt every
new block (64 bytes in length) depends on all the previous blocks. As a result a hypothetical
\memory-saver" should increase his calculation speed exponentially.

Our algorithm requires about 2 Mb per instance for the following reasons:

1. It �ts in the L3 cache (per core) of modern processors, which should become mainstream
in a few years;

2. A megabyte of internal memory is an almost unacceptable size for a modern ASIC pipeline;

14

7.2

n .
� Anonymity. Given a signature � and the corresponding set S it is impossible to determine

the secret index j of the signer with a probability p > 1

� Exculpability. Given set S, at most n �1 corresponding private keys x i (excluding i = j)
and the image I j of the keys x j it is impossible to produce a valid signature � with I j .
This property implies theft protection in the context of CryptoNote.

� Unforgeability. Given only a public keys set S it is impossible to produce a valid signature
�.

We shall give a proof for our one-time ring signature scheme. At some point it coincides with
the parts of the proof in [24], but we decided to rewrite them with a reference rather than to
force a reader to rush about from one paper to another.

These are the properties to be established:

� Linkability. Given all the secret keys fx i gn
i=1 for a set S it is impossible to produce n + 1

valid signatures � 1; � 2; : : : ; � n+1 , such that all of them pass the LNK phase (i.e. with
n + 1 di�erent key images I i). This property implies the double spending protection in the
context of CryptoNote.

A Security

15

where logA B informally denotes the discrete logarithm of B to the base A.
As in [24] we note that @i : xi = logH p (P i) I implies that all c i ’s are uniquely determined.

The third equality forces the adversary to �nd a pre-image of H s to succeed in the attack, an
event whose probability is considered to be negligible.

The �rst two equalities imply

(
logG L 0

i = r i + ci x i

logH p (P i) R0
i = r i + ci logH p (P i) I

i=1

ci = H s(m; L 0
1; : : : ; L 0

n ; R0
1; : : : ; R0

n) mod l

L 0
i = r i G + ci Pi

R0
i = r i H p(Pi) + ci I

nP

Linkability

Theorem 1. Our one-time ring signature scheme is linkable under the random oracle model.

Proof. Suppose an adversary can produce n + 1 valid signatures � i with key images I i 6= Ij
for any i; j 2 [1 : : : n]. Since #S = n, at least one I i 6= xi H p(Pi) for every i. Consider the
corresponding signature � = (I; c 1; : : : ; cn ; r1; : : : ; r n). VER(�) = \true", this means that

8
>><

>>:

Exculpability

Theorem 2. Our one-time ring signature scheme is exculpable under the discrete logarithm
assumption in the random oracle model.

Unforgeability

It has been shown in [24] that unforgeability is just an implication of both linkability and excul-
pability.

Theorem 3. If a one-time ring signature scheme is linkable and exculpable, then it is unforgeable.

Proof. Suppose an adversary can forge a signature for a given set S: � 0 = (I 0; : : :). Consider
all valid signatures (produced by the honest signers) for the same message m and the set S:
� 1; � 2; : : : ; � n . There are two possible cases:

1. I 0 2 fI i gn
i=1 . Which contradicts exculpability.

2. I 0 62 fIi gn
i=1 . Which contradicts linkability.

c0
j �c j

mod l
A outputs x j because L j = r j G + cj Pj = r 0

j G + c0
j Pj and Pj = P .

Proof. Suppose an adversary can produce a valid signature � = (I; c 1; : : : ; cn ; r1; : : : ; r n) with
I = x j H P (Pj) with given fx i j i = 1; : : : ; j �1; j+1; : : : ; ng. Then, we can construct an algorithm
A which solves the discrete logarithm problem in E(F q).

Suppose inst = (G; P) 2 E(F q) is a given instance of the DLP and the goal is to get s,
such that P = sG. Using the standard technique (as in [24]), A simulates the random and
signing oracles and makes the adversary produce two valid signatures with Pj = P in the set S:
� = (I; c 1; : : : ; cn ; r1; : : : ; r n) and � 0 = (I; c0

1; : : : ; c0
n ; r 0

1; : : : ; r 0
n).

Since I = x j H p(Pj) in both signatures we compute x j = logH p (P j) I =
r j �r 0

j

16

2
In fact, the result should be reduced by the probability of collision in H s, but this value is

considered to be negligible.

2 + �
2 = 1

n � 1
n � n�1

2 � 1
n � �) � 1

n + � + (n�1
2 + 1

2 +Pr (k = j j inst 2 DDH)+
Pr (k 6= j j inst 2 DDH)�Pr (r = 1)�Pr (k = j j inst =2 DDH)�Pr (k 6= j j inst =2 DDH)�Pr (r = 0) =
1

2 +Pr (1 j inst 2 DDH) �Pr (1 j inst =2 DDH) = 1

2 .
Let inst = (G1; G2; Q1; Q2) 2 E(F q) be the instance of DDH and the goal to determine if

logG1
Q1 = logG2

Q2. A feeds the adversary with valid signature � 0 = (I; : : :), where P j =
x j G1 = Q1 and I = Q 2 and simulates oracle H p, returning G2 for query H p(Pj).

The adversary returns k as his guess for the index i : I = x i H P (Pi). If k = j, then A
returns 1 (for \yes") otherwise a random r 2 f1; 0g. The probability of the right choice is com-
puted as in [24]: 1

2 + �
n + �. Then, we can construct algorithm A which solves the decisional Di�e-Hellman

problem in E(Fq) with the probability 1

Anonymity

Theorem 4. Our one-time ring signature scheme is anonymous under the decisional Di�e-
Hellman assumption in the random oracle model.

Proof. Suppose an adversary can determine the secret index j of the Signer with a probability
p = 1

[4] Shen Noether, Adam Mackenzie, and the Monero Research Lab. Ring con�dential transactions. Ledger,
1(0):1{18, 2016.

[3] M. M�oser, K. Soska, E. Heilman, K. Lee, H. He�an, S. Srivastava, K. Hogan, J. Hennessey, A. Miller,

A. Narayanan, and N. Christin. An Empirical Analysis of Traceability in the Monero Blockchain. ArXiv
e-prints, April 2017.

[2] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous anonymous group signature

for ad hoc groups. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors, Information
Security and Privacy, pages 325{335, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[1] Amrit Kumar, Cl�ement Fischer, Shruti Tople, and Prateek Saxena. A Traceability Analysis of Monero’s

Blockchain. Cryptology ePrint Archive, Report 2017/338, 2017. https://eprint.iacr.org/2017/338.

References

S: MonerEOS.org
T: twitter.com/MonerEOS
F: facebook.com/monereos
T: t.me/MonerEOSofficial

	Introduction
	Bitcoin drawbacks and some possible solutions
	Traceability of transactions

	The CryptoNote Technology

